General Description

The MAX1582/MAX1582Y drive up to six white LEDs in series with a constant current to provide display backlighting for two (main and sub-) displays in cell phones and other handheld devices. This configuration eliminates the need for ballast resistors and expensive factory calibration. The proprietary dual-output, step-up pulse-width modulation (PWM) converter includes a low RDSON n-channel MOSFET switch for high efficiency and maximum battery life.
The MAX1582/MAX1582Y utilize 1 MHz current-mode PWM control to allow small input and output capacitors and a small inductor, while minimizing ripple on the input supply and avoiding interference to sensitive circuitry in the equipment. Integrated overvoltage protection (27 V for the MAX1582 and 18 V for the MAX1582Y) eliminates the need for an external zener diode to protect the IC from open circuit. Flexible dimming control utilizes either an analog control signal or direct digital PWM control without external RC filtering. This also increases dimming accuracy at low brightness levels. The PWM dimming signal can be any frequency from 200 Hz to 200 kHz . Softstart eliminates inrush current during startup.
The MAX1582/MAX1582Y are available in tiny 4×4 chip-scale (UCSP'ㅆ) and 12-pin thin QFN packages.

Applications

Cell Phones with One or Two Displays
Smart Phones, Palmtops, and Wireless Handhelds
Other Handheld Devices with Dual Displays
Typical Application Circuit

Features

- Accurate Current Regulation for Uniform Illumination
- Lights Up Two LED Sections for Main and Subdisplays
- Up to 84\% Efficiency
- Internal High-Power, 30V MOSFET
- Low 15 mV P-p Input Ripple
- Flexible Dimming Control Analog DAC Controlled Direct-Digital PWM (No RC Required) from 200 Hz to 200 kHz
- Overvoltage Protection to Eliminate Zener Diode
- Constant 1MHz PWM Operation
- Low-Profile Inductor and Capacitors
- Soft-Start Eliminates Inrush Current
- 2.6 V to 5.5 V Input
- $0.01 \mu \mathrm{~A}$ (typ) Shutdown Current
- Tiny UCSP $(2.1 \mathrm{~mm} \times 2.1 \mathrm{~mm} \times 0.61 \mathrm{~mm})$ and Thin QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) Packages

Ordering Information

PART	TEMP RANGE PIN-PACKAGE	TOP MARK	
MAX1582EBE-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 UCSP-16	1582 EBE
MAX1582EBE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 UCSP-16	1582 EBE
MAX1582ETC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN-EP*	AACE
MAX1582ETC +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN-EP*	AACE

*EP = Exposed paddle
+Denotes lead-free package.
UCSP is a trademark of Maxim Integrated Products, Inc. Ordering Information continued at end of data sheet.

Pin Configurations

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

ABSOLUTE MAXIMUM RATINGS

V+, VP, CTRL to GND.	. 0.3 V to +6.0V
PGND to GND	. 0.3 V to +0.3V
LX, OUT1 to GND	..-0.3V to +30V
OUT2 to GND	..-0.3V to +14V
COMP, CS, EN1, EN2 to GND.	to ($\mathrm{V}_{\mathrm{V}}++0.3 \mathrm{~V}$)
lıx.	$\ldots1 A^{\text {RMS }}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 12-Pin Thin QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).. .1349 mW 16-Pin UCSP (derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............. 518 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature .. $+150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{V}+}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=20 \mathrm{~V}, \mathrm{~L} 1=22 \mu \mathrm{H}, \mathrm{COUT}^{2}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {COMP }}=0.022 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=7.5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=+1.5 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}_{+}, \mathrm{T}_{\mathbf{A}}=\right.$ $\mathbf{0}^{\circ} \mathbf{C}$ to $+85^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{V}}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=20 \mathrm{~V}, \mathrm{~L} 1=22 \mu \mathrm{H}\right.$, COUT $=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{COMP}}=0.022 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=7.5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=+1.5 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}_{+}, \mathrm{T}_{\mathbf{A}}=$ $\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
N-CHANNEL SWITCH						
LX On-Resistance				1.50	2.25	Ω
LX Leakage Current	$V_{\text {LX }}=+28 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	5	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.02		
LX Current Limit	Duty cycle = 90\%		450	650	950	mA
MAIN AND SUBDISPLAY ON/OFF SWITCHES						
OUT1 to OUT2 On-Resistance	EN1 = GND, EN2 = V+			2.5		Ω
OUT2 to CS On-Resistance	$\mathrm{EN} 1=\mathrm{V}+$, EN2 = GND			2.5		Ω
OUT1 to OUT2 Leakage Current	$\mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}+$, V OUT1 $=25 \mathrm{~V}$, V ${ }_{\text {OUT2 }}=+9 \mathrm{~V}, \mathrm{~T}_{\text {A }}=+85^{\circ} \mathrm{C}$			0.05		$\mu \mathrm{A}$
OUT2 to CS Leakage Current	$\mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}+$, VOUT2 $=12 \mathrm{~V}, \mathrm{~V}_{\text {CS }}=0, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$			0.05		$\mu \mathrm{A}$
EN1 and EN2 Logic Input Voltage High	$+2.6 \mathrm{~V}<\mathrm{V}^{+}<+5.5 \mathrm{~V}$		1.6			V
EN1 and EN2 Logic Input Voltage Low	$+2.6 \mathrm{~V}<\mathrm{V}_{+}<+5.5 \mathrm{~V}$				0.6	V
EN1 and EN2 Input Leakage	$\mathrm{V}_{\mathrm{V}+}=\mathrm{V}_{\mathrm{EN} 1}=\mathrm{V}_{\mathrm{EN} 2}=+5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.02	1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.1		

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=+20 \mathrm{~V}, \mathrm{~L} 1=22 \mu \mathrm{H}, \mathrm{COUT}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {COMP }}=0.022 \mu \mathrm{~F}, \mathrm{RSENSE}=7.5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=+1.5 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}_{+}, \mathrm{T}_{\mathbf{A}}=\right.$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1,3)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Supply Voltage		2.6	5.5	V
Undervoltage Lockout (UVLO) Threshold	$\mathrm{V}+$ rising or falling	2.10	2.55	V
Quiescent Current	No switching, $\mathrm{V}_{\mathrm{C}}=+0.25 \mathrm{~V}$		0.56	mA
Overvoltage Lockout (OVLO)	MAX1582	26	29	V
Threshold (Rising)	MAX1582Y	17	19	
OUT1 Input Bias Current	VouT1 $=+26 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}+$	20	65	$\mu \mathrm{A}$
ERROR AMPLIFIER				
CTRL to CS Regulation	$\mathrm{V}_{\text {CTRL }}=+1.0 \mathrm{~V}, \mathrm{~V} \mathrm{~V}_{+}=+2.6 \mathrm{~V}$ to +5.5 V	0.093	0.107	V
CTRL Input Resistance	$0<\mathrm{V}_{\text {CTRL }}<+1.0 \mathrm{~V}$	290	780	$\mathrm{k} \Omega$
CS to COMP Transconductance	$\mathrm{V}_{\text {COMP }}=1.0 \mathrm{~V}$	32	85	$\mu \mathrm{S}$
OSCILLATOR				
Operating Frequency		0.75	1.30	MHz

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=+20 \mathrm{~V}, \mathrm{~L} 1=22 \mu \mathrm{H}\right.$, COUT $=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {COMP }}=0.022 \mu \mathrm{~F}, \mathrm{RSENSE}=7.5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=+1.5 \mathrm{~V}, \mathrm{EN} 1=\mathrm{EN} 2=\mathrm{V}_{+}, \mathrm{T}_{\mathbf{A}}=$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 3)

PARAMETER	CONDITIONS	MIN	MAX	UNITS
Maximum Duty Cycle	CTRL $=\mathrm{V}+, \mathrm{CS}=\mathrm{GND}$	91	$\%$	
N-CHANNEL SWITCH			2.25	Ω
LX On-Resistance	Duty cycle $=90 \%$	450	950	mA
LX Current Limit				

Note 1: Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ for UCSP parts. Limits over the entire operating temperature range are guaranteed by design and characterization but are not production tested.
Note 2: The minimum output voltage is the input voltage minus the forward voltage drop of the Schottky diode:

$$
V_{\text {OUT(MIN }}=V_{V+}-V_{\text {DIODE }}
$$

Note 3: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Typical Operating Characteristics
(See the Typical Applications Circuit, $\mathrm{V}_{\mathrm{V}+}=\mathrm{V}_{\mathrm{VP}}=3.6 \mathrm{~V}$, $\operatorname{ILED}=15 \mathrm{~mA}, \mathrm{~L} 1=22 \mu \mathrm{H}, \mathrm{COUT}_{1}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{COMP}}=0.022 \mu \mathrm{~F}, \mathrm{RSENSE}=7.5 \Omega$, $\mathrm{V}_{\mathrm{CTRL}}=1.5 \mathrm{~V}, 4 \mathrm{LEDs}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

Typical Operating Characteristics (continued)

(See the Typical Applications Circuit, $\mathrm{V}_{\mathrm{V}+}=\mathrm{VVP}=3.6 \mathrm{~V}$, ILED $=15 \mathrm{~mA}, \mathrm{~L} 1=22 \mu \mathrm{H}, \mathrm{COUT}_{1}=0.1 \mu \mathrm{~F}, \mathrm{C}$ COMP $=0.022 \mu \mathrm{~F}, \operatorname{RSENSE}=7.5 \Omega$, $\mathrm{V}_{\mathrm{CTRL}}=1.5 \mathrm{~V}, 4 \mathrm{LEDs}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
QFN	UCSP		
1	A1	V+	Input Voltage Supply. Input voltage range is 2.6 V to 5.5 V . Connect a $2.2 \mu \mathrm{~F}$ capacitor from $\mathrm{V}+$ to PGND.
2	A2	VP	High-Current Input Supply. Connect to V+.
3	A3	CTRL	Brightness Control Input. LED brightness is controlled by the voltage applied to CTRL. Varying the voltage from 0 to +1.62 V adjusts the brightness from dim to bright, respectively. Any voltage above +1.62 V does not increase brightness.
4	A4	COMP	Compensation Input. Connect a $0.022 \mu \mathrm{~F}$ capacitor (CCOMP) from COMP to GND. CcOMP stabilizes the converter and controls soft-start. CCOMP discharges to GND when in shutdown.
5	B4	GND	Ground. Connect to PGND at a single point near the IC.
6	C4	EN1	Enable 1 Input. Drive EN1 high to enable the main-display LEDs. Pull EN1 low to turn off the maindisplay LEDs. Pull both EN1 and EN2 low to place the IC in low-current shutdown mode.
7	D4	EN2	Enable 2. Drive EN2 high to enable the subdisplay LEDs. Pull EN2 low to turn off the subdisplay LEDs. Pull both EN1 and EN2 low to place the IC in low-current shutdown mode.
8	D3	CS	Current-Sense Feedback Input. Connect a resistor (RSENSE) from CS to GND to set the LED bias current. The voltage at CS regulates to $\mathrm{V}_{\text {CTRL }} / 10$ or +0.162 V , whichever is lower.
9	D2	OUT2	Display Switch Output. OUT2 is internally connected to CS when only the main display is lit. OUT2 is internally connected to OUT1 when only the subdisplay is lit. OUT2 is high impedance when both displays are lit and when the IC is shut down.
10	D1	OUT1	Overvoltage Sense. When Vout1 is greater than 27 V (18V on the MAX1582Y), the internal n-channel MOSFET turns off until VOUT1 drops below 25 V (16.7 V on the MAX1582Y), then the IC re-enters soft-start. Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT1 to PGND.
11	C1	LX	Inductor Connection. During shutdown, this pin is high impedance.
12	B1	PGND	Power Ground. Connect to GND at a single point near the IC.
EP	-	EP	Exposed Paddle. Connect directly to GND and PGND under the IC.

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

MAX1582/MAX1582Y

Figure 1. Functional Diagram

Detailed Description

The MAX1582's high efficiency and small size make it ideally suited to drive up to six series-connected LEDs (four LEDs for the MAX1582Y). Separate enable inputs are provided to control the main and subdisplay backlighting. The MAX1582/MAX1582Y operate as a boost DC-to-DC converter that regulates output current rather than voltage. It provides even illumination by sourcing the same output current through each LED, eliminating the need for expensive factory calibration. The fast 1 MHz internal oscillator allows for a small inductor and small input and output capacitors while minimizing input and output ripple.

Shutdown for Main and Subdisplay
The MAX1582/MAX1582Y have two enable inputs (EN1 and EN2) used to enable or shutdown the main and subdisplay LEDs. When EN1 and EN2 are both high, all LEDs are lit. With EN1 high and EN2 low, the main-display LEDs are lit, and the subdisplay LEDs are shorted by the MAX1582/MAX1582Y. With EN1 low and EN2 high, the main-display LEDs are shorted and the subdisplay LEDs are lit.
When both EN1 and EN2 are low, the MAX1582/ MAX1582Y enter shutdown, reducing supply current to $0.01 \mu \mathrm{~A}$ (typ). Although the internal n-channel MOSFET does not switch in shutdown, there is still a DC-current

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

path between the input and the LEDs through the inductor and Schottky diode. To ensure the LEDs remain off when the MAX1582/MAX1582Y are in shutdown, the minimum input forward voltage of the LED array must exceed the maximum input voltage. Typically, the leakage current through the LEDs in shutdown is less than $1 \mu \mathrm{~A}$.

Soft-Start

The MAX1582/MAX1582Y attain soft-start by charging CCOMP gradually with a current source. When Vcomp rises above 1.25 V , the internal MOSFET begins switching, but at a reduced duty cycle. When Vcomp rises above 2.25 V , the duty cycle is at its maximum.

Overvoltage Protection

OVLO occurs when Vout1 rises above 27V (18V for the MAX1582Y). The protection circuitry stops the internal MOSFET from switching and causes Vcomp to decay to GND. The device comes out of OVLO and into soft-start when Vout1 falls below 25V (16.7V for the MAX1582Y).

Design Procedure

Adjusting LED Current

Adjusting the MAX1582/MAX1582Ys' output current changes the brightness of the LEDs. The LED current is set by the voltage at CTRL (VCTRL) and the senseresistor value (RSENSE):

$$
\mathrm{I}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{CTRL}}}{10 \times R_{\mathrm{SENSE}}}
$$

The $\mathrm{V}_{\text {CTRL }}$ voltage range for adjusting output current is 0 to +1.62 V . To set the maximum current, calculate RSENSE when $\mathrm{V}_{\text {CTRL }}$ is at its maximum as follows:

$$
\mathrm{R}_{\text {SENSE }}=\frac{1.62}{10 \times \mathrm{l}_{\mathrm{LED}(\mathrm{MAX})}}
$$

Power dissipation in RSENSE is typically less than 5mW; therefore, a standard chip resistor is sufficient.

PWM Dimming Control

CTRL is also used as a digital input, allowing LED brightness control with a logic-level PWM signal applied directly to CTRL. The frequency range is from 200 Hz to 200 kHz , while 0% duty cycle corresponds to zero current and 100% duty cycle corresponds to full current. The error amplifier and compensation capacitor form a lowpass filter, so PWM dimming results in DC current to the LEDs without any additional RC filters required.

Capacitor Selection
The exact values of input and output capacitors are not critical. The typical value for the input capacitor is $2.2 \mu \mathrm{~F}$, and the typical value for the output capacitor is $0.1 \mu \mathrm{~F}$. Larger value capacitors can be used to reduce input and output ripple, but at the expense of size and higher cost.
CCOMP stabilizes the converter and controls soft-start. Connect a $0.022 \mu \mathrm{~F}$ capacitor from COMP to GND. The minimum value for CCOMP is Cout / 10. The soft-start time is found from:

$$
\mathrm{t}_{\mathrm{SS}}=\mathrm{C}_{\mathrm{COMP}} \times\left(\frac{1.25 \mathrm{~V}}{5 \mu \mathrm{~A}}\right)
$$

Inductor Selection
Recommended inductor values range from $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$. A $22 \mu \mathrm{H}$ inductor optimizes the efficiency for most applications, while maintaining a low 15 mVP -p input ripple. With input voltages near 5 V , a larger value of inductance may be more efficient. To prevent core saturation, ensure that the inductor saturation current rating exceeds the peak inductor current for the application. Calculate the peak inductor current with the following formula:

$$
\mathrm{I}_{\text {PEAK }} \cong \frac{\mathrm{V}_{\mathrm{OUT}(1)(\mathrm{MAX})} \times \mathrm{I}_{\mathrm{LED}(\mathrm{MAX})}}{0.8 \times \mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}}+\frac{\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})} \times 0.8 \mu \mathrm{~S}}{2 \times \mathrm{L}}
$$

Schottky Diode Selection

The MAX1582/MAX1582Ys' high switching frequency demands a high-speed rectification diode (D1) for optimum efficiency. A Schottky diode is recommended due to its fast recovery time and low forward-voltage drop. Ensure that the diode's average and peak current rating exceeds the average output current and peak inductor current. In addition, the diode's reverse breakdown voltage must exceed Vout1. The RMS diode

Due to fast-switching waveforms and high-current paths, careful PC board layout is required. An evaluation kit (MAX1582EVKIT) is available to speed design.
current can be calculated from:

$$
I_{\text {DIODE }(\text { RMS })} \cong \sqrt{\text { IOUT1 } \times I_{\text {PEAK }}}
$$

Applications Information

PC Board Layout

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

When laying out a board, minimize trace lengths between the IC and RSENSE, the inductor, the diode, the input capacitor, and the output capacitor. Keep traces short, direct, and wide. Keep noisy traces, such as the LX node trace, away from CS. The input bypass capacitor ($\mathrm{C} I \mathrm{~N}$) should be placed as close to the IC as possible. For the thin QFN package, PGND and GND should be connected directly to the exposed paddle underneath the IC. The ground connections of CIN and Cout1 should be as close together as possible. The traces from IN to the inductor and from the Schottky diode to the LEDs can be longer.

Chip Information

TRANSISTOR COUNT: 2546
PROCESS: BiCMOS

Ordering Information

PART	TEMP RANGE PIN-PACKAGE	TOP MARK	
MAX1582YEBE-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 UCSP-16	1582YEBE
MAX1582YEBE +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 UCSP-16	1582 YEBE
MAX1582YETC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN-EP*	AAEV
MAX1582YETC +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12 Thin QFN-EP*	AAEV

*EP = Exposed paddle.
+Denotes lead-free package
UCSP is a trademark of Maxim Integrated Products, Inc.

Pin Configurations (continued)

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Efficiency Step-Up Converters for White LED Main and Subdisplay Backlighting

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

